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OPEN QUANTUM SYSTEM OF TwWO COUPLED
HARMONIC OSCILLATORS

A.S3ndulescu, H.Scutaru', W.Scheid?

On the basis of the theory of Lindblad for open
quantum systems we derive master equations for a sys-—
tem consisting of two harmonic oscillators. The time-
dependence of expectation values, Wigner-function and
Weyl operator are obtained and discussed. The chosen
system can be applied for the description of the
charge and mass asymmetry degrees of freedom in deep
inelastic collisions in nuclear physics.

The investigation has been performed at the Labo-
ratory of Theoretical Physics, JINR.

OTKDbITaFI KBaHTOBas cuctema
ANA ABYX CBA3aHHBIX TAapMOHMUECKUX OCUMNNATOPOB

A.CsHgoynecky, X.Ckyrapy, B.lei#ig

B pamkax Teopuu JIMHOGIIaga OJA OTKDHITRIX KBaHTOBBIX
cHCTeM OblTH MOoJy4YeHh yDABHEHHS MacTepa OJsa OBYX CBA~
3aHHBX TapMOHHUYECKHX OCLH/UIATOPOB. s 3TOH CHCTEMH,
KOTOpasi MOXeT OIMUCHBATHL Iepeagadyy MacCh H 3apana B
TyBOKOHEYNPYTHX CTOJIKHOBEHHSX, ObUIM IOJIYUEHH B SAB—
HOM BHIe CpeJHHe BenuuuHsl, GyHKUUA BarhHepa u omepartop
Ba#na.

PaBora BumosHeHa B JlabopaTOpHHM TeOpeTHUeCKOoH ¢H-—
suku OUSH.

1. Introduction

In a recent paper/l/ it was shown that various master
equations for the damped quantum oscillator used in the
literature for the description of damped collective modes
in deep inelastic collisions in nuclear physics are par-
ticular cases of the master equation derived by Lind-
blad /2,3/.

In the present paper we extend our previous work /4/
on the dynamics of charge and mass equilibration in deep
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inelastic collisions by describing the corresponding
collective modes as two coupled damped quantum oscilla-
tors. The damping of these oscillators can be carried
out by the method of Lindblad’2:3/ . In Sect.2 we present
the equation of motion of the open quantum system in the
Heisenberg picture. With this equation we derive the
time-dependence of the expectation values of the coordi-
nates and momenta and their variances, as shown in
Sect.3. The connections with the Wigner-function and
Weyl operator are discussed in Sect.4. Finally, in
Sect.5, we demonstrate the time—dependence of the vari-
ocus quantities for a simplified version of the model,
where the decay constants can be calculated analytically.

2. The Equation of Motion in the
Heisenberg Plcture

If ¢, is the dynamical semigroup describing the time
evolution of the open quantum system in the Heisenberg
picture, then the master equation is given for an ope-
rator A as follows 723/,

dg(A) -~ = ; - 1 - ' ~
—& = L(@,(A) = —[H,¢ W)+ 53“?“’5'[ 2,(8) Y, 1+( V5,8, (A)IV)).

M
The operators H,V;, V*{j =1, 2,3, 4) are taken to be func-
. . .
tions of the basic observables of the two quantum oscil-
lators. The coordinates are g; and 4o, and the momenta
Py and p, obeying the usual commutation relations

[qllpl] = mI’ [qu p2] = }ﬁI,
[qlv QQ]=09 [pl,p2]=0, [ql,p2]=0, [q2,p1] =0.

In order to obtain an analytically solvable model, H is
taken to be a polynomial of second degree in these basic
observables and Vj,VT are taken to be polynomials of
first degree. Then in the linear space spanned by 44,95,
Py, Pys there exist only four linearly independent ope-
rators Vj= 1,2,8,4

2

%ka+-K2 b.q, » (2)

V. = )
=1 K

Ik
where a . ,ijGC with j =1, 2, 3, 4, and x = |, 2. Then
it yields

2 2
V¥*= % a*p + X b* q._, (3)
i k=1 K

Koy KK jx

I Mw

1
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where af, ,b}"x are the complex conjugates of aj¢ ,bjx .
The Hamlltonian H is chosen in the form of two coupled
oscillators
2 2
_ 1 2 My o
H= 2 ( P +—-—§——-qK)+n12p1p2+

(4)
+ .
1“K1K2(p xqug + qxszl) V12q1q2

Inserting the Hamiltonian H and the operators V and V*
1nto Eq (1) we obtaln

L) = Ly(A) + L o(A) + Lo (A), (5)

where LI'L 2 and leare given as (k = 1, 2):

- ; . . |
L@ =5 [Hoc Al - E?DPKPK[QK’[QK'A]] - —ﬁ-—-z—DqKqK(pK,[pmA]}.;,
1 1
+ %—2— DKqK[qu[pK'A]] + FDqux[pK'[qK ,A]] +
+ j;;if-(’\m -pxx) (A, D, 1q, +q,. [A,p, D - (6)

- %&’("'« +u A, q, dp, +p,[A,q, D,

-~

Lo (A) =~ n2 Dy, », @ay.lqy, Al + [q,,[q,, AID) -

1
- EDqlqz([pv[Pg-A]] +[pglpy AID +

1
T p q ([qr[pg’A]] +[py. [a,, A +
1

+ =5 Dqp, €0y [0, AT + Lo, lp, A +

i
3 (@, =xyp )([A"h]pz + pz[A’ P D -

- gr(@1e + x5p) (A B,Ip, +p (A, ] +
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* 5%‘“312 ~vie XA qlap + g [A,q,]) -

+ —21%-()\12 -ur1p)XlA p1la, +q,[A D] -~

- _;.h_()\lg +u1e)[A, qolpy + pylA gD

+ —é%()\zlv ~ner SA,pela; + q,fA, p,D -
~‘5%'(?\21 *‘”21X[A'q1]p2‘+p2[A’q1D' 7

Here, we used the following abbreviations (« = 1, 2):

2
1 2 mKCl)K 2 .ﬁ ~)*—)
H = Py + ——q®% , D =D = — Re{a*a ),
oK 2ml< K 2 K QKCIﬂ q#q,( 2 K |
D = D = -fLRe(—t;*t_)) ) D =D =-i‘Re(;*g ) y (8)
pKP# = P#PK p) Kl quu pqu 2 K
5 - > - B
@ = =gy =~Im@7ay), Byp=-Byy=-Imbib), A =-Imagh).

-

The scalar products are formed with the vectors §K, b

. . S K
and their complex conjugates a:,bi. The vectors have the
components
- -
aK=(a1K,a2K,a3K,a4K), bK =(b1K’b2K'b3K’b4K)' (9

Now, as a consequence of the definitions (8) of the phe-
nomenological constants which appear in L(A) and of the
positivity of the matrix formed by the four vectors 3 ,
g o P . . . . .
a9, by, by, it follows that the principal minors of this
matrix are positive or zero. This matrix is given by

20 2.2 > O
a.la1 aja, alb1 alb2
>, > > - >, > >
* *
" aja; aza, agb, ajh,
2l nr W B T )
e
bia, 132 1% P2
> > > > > > >
* % *
bya,  bza, bib, bjb,
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i ifi ii
D 4,9, Dq1q2 "o %12 "Dqlpl‘ '2"‘\11 "Dqlpz‘ ‘2“’\12
ifi ifi i
quql T2 %t D apq, ..qupf T a1 _qupz “ghe
it h .}
—Dplql + -2--)\11 —Dp1q2+ —2—-)‘21 Dp1p1 Dplpz-'—z—ﬁlz

: 7 5 he

D +2A.. D 4 p. -Xg p
Pply 2 12 Polp = 2722 TPgPy 2 PoPe

(10)
For example, we derive the following condition from the
positivity of (10):

2 _ A% o
Dgjay Pagap "MPaya,)" 2 4 2is- (11)

This inequality and the corresponding ones derived from
Eq.(10) are constraints imposed on the phenomenological
constants by the fact that ¢t is a dynamical semigroup/ag

3. The Time-Dependence of FExpectation Values

The time-dependent expectation values of selfadjoint
operators A and B can be written with the density opera-
tor p, describing the initial state of the quantum sys—

tem, as follows:
my® = TH(p$,(A), 0,50 =5 Tr(pd, (AB + BA)) . (12)

In the following we denote the vector with the_foﬁr com
ponents mg. ) , mqg(t) . mpl(t) and mpg(t) by m() and

the following 4x4 matrix by ;(0:

%q0; “ag@y %apy  Zayp

g o o g

g9y 929 "9gP1 " GgP2 | (13)
%pyay ?pyq; pypy 7pyp,

%poa;  “pgas Tpgpy  Tpoby

Then via direct calculation of f(qx) and LQHJ we obtain

wm _Sa, (14)
dt
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where
-\

11 YH11 A trge Vmy  -agy +xy
—~Ag1 +pe1  ~Agetigp @y +Kip 1/m,
Y= ~my of Big ~vig ryy-#y  “hpi-eg
~Big ~ g  ~myw} ~Ajg—Hip  ~Agp—ia (15)
From Eq.(14) it follows that
m(t) = ME®) m© = exp(t¥)m(©) , (16)

yhere mM(0) is given by the initial conditions. The matrix
M({t) has to fulfil the condition

lim M(t) = 0. (17)
t—o> oo

In order that this limit exists, ¥ must have only eigen-
values with negative real parts. - -
By direct calculation of L(qca,) » L(p,p,) and L(qp, +

+p‘yq,<) » Kyp=1,2, we obtain

%;L=§3+;§T+zﬁ, (18)
where D is the matrix of the diffusion coefficients
Dq1q1 D‘hqz Dq1p1 Dqﬂ’z
D D D D
~ 959 qo4 qoP qsp
5 291 2de 2P1 " daPg ; (19)
Dplql Dp1q2 Dplpl Dp1p2
ngql ngq 2 Dp2p1 D p2p 2

and YT, the transposed matrix of ¥. The time-dependent
solution of Eq.(18) can be written as

o) =M® @O -SHMT + 3, (20)

where lT/l(t) is defined in Eq.(16). The matrix b3 is time-
independent and solves the static problem of Eq.(18)
(do/dt = 0)

¥ + 88T 42D -o0. (21)
Now we assume that the following limes exist for t- w:
G() = lima(t) . (22)
In thatt»:ase it follows from (20) with Eq.(17):

Gl = 3. (23)
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Inserting Eq.(23) into Eq.(20) we obtain the basic equa-
tions for our purposes:

a®) = M(t) @0) -o()MI(t) +olw), (24)
where
Yo(o) + a(e)¥T = 2D, (25)

4. The Wigner-Function and Weyl Operator

Finally we want to discuss the time-dependence of the
Wigner-function. This function is defined as

= a;i)‘t f_if GXD(%—(XIT,1+121;2_ylfl_yzfg)x
(26)

xTe(p (W(£ 1 &y5 1o mg NAE 1dE a0 1dn ,

where the Weyl operator W is defined by (§1,§é,nv N,
real):

w(flyfz; 74 ,712) = exp(-;;-(nlq1+ Noly -tflpl ""fgpg)) . 27)
Using the method developed by Lindblad 723/ for the one-

dimensional case we find for the time-development of the
Weyl operator the relation

B W& €t myum ) =W(E D0 1,0, 7,0 exED) . (28)

f(x{,%p,¥1,Yg,t)

The real functions &(t) =(£,(0, &M, 5,0, 7,0) and
g(t) satisfy the equation of motion:
O 357515y, (29)
dt
d t) 1 > a~AnAam]
80 _ 1 Znibi ey, (30)
dt n2
where
0 0 - 0
- 0 o 0 -1
(3D
I=l1 o o :
0 1 0 0

Egs. (29) and (30) are obtained by inserting the Weyl
operator W({,,&; 74,m5) into the equation of motion
(Eq.(1)) with L defined in Eqs.(5), (6) and (7). The ini-
tial conditions for the coordinates Ei(t, &M, 7

and ny(t) are determined by £,(0) =&;, £5(0) =&5, 74(0) =1,
and 73(0) =9, respectively, and, g{t) by g({0)=0. From
Eqs.(29) and (30) we find that &() 1is a linear function
in the coordinates &,,&,,7, and Ngand g(t) a quadratic func-
tion.
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The Weyl operator can be used to calculate the time-
dependent expectation values M(t) and o(t) (see Eqs.(16)
and (20)), since this operator is connected with the coor-
dinates and momenta via the derivatives:

oW i oW i a w 1

i s = m~ ==D._, "“"‘-Ie = =q., I-' ==—D.P.
o, E=o BV amy Fo BV 00E oo 2L

2 P 1 (32)

AL = (P;q;+9,p;) , ~=—r—]| == ==q.q,.

af anj ? 0 2h2 77 aﬂiaﬂj g=o £2 i

For example, one obtains by using Eq.(32)

3% (W)

o (t) = -B2Te(p : | (33)
PP 3,0 9,0  Ea=0)=

Equations of this type can be evaluated with the help of
Eqs (28)-(30) and lead to the same results for m{t) and
oc(t) as given in Sect.3. With the Weyl-opeartor (28) we
can calculate the time-development of the Wigner-func-
tion. For this purpose we use the Fourier transformed

of the Wigner-function at t = O:

Tr(p exp(-l—(nl’q + 150y ~ &P~ &ps))) =

ffff exp(—-—(x1nl+ x2772 ylf’l“Y2 f:g)) X (34)

Xf(xl; Xg,yl. y2, t=0)dx1dx2dy1dy2.
When this relation is inserted into Eq.(26) after the
Weyl-operator ¢,(W) is expressed by (28), one can inte—

grate over the coordinates f »£,,m, and n_ with the fol-
2° 11 2
lowing result for the ngner—functlon

(%1%, ¥1, 95 0t) = mommmee [ [T exp (- L@ -3 D 2™ -l ) x
VdetdrZ) ~ 4 (35)

xf(x9, %5 ,¥{,¥g,t=0) dx{dxjdy dy; ,
where x =(x1,x2.y1,y2) and the macrix 2(0 is given by

t
Z(t) = [ M(t") DM T(t')dt'. (36)

(¢}
This definition can be applied in order to rewrite Eq.(24):

c® =M® s M) +28@) . (37)
In the particular case when we set

e exp(= §1~(§ -2(0)a©) " G-50)),
v det(27a(0)) (38)

f(x4,%5,¥,,¥5, t=0) =
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we obtain from Eq.(35)

1 1 -»> - ~ -] >
f(x1,%0, ’ D I - s{Xx~m(t)) o (t) x-m(v)),
(x1.X2, Y1, ¥2.t) T exp(~ { %)

which is the well-known result for Wigner—functions/s'e",./

5. Example for Damped Uscillators

In order to illustrate the formalism developed in the
preceding Sections, we present a simple example of two
oscillators, which are not directly coupled, i.e. Kq9=0
Ryj =0, vip=0. In this case the matrix Y, g’overningkthe
time-development of the expectation values m(t) and o(t),
becomes

~A1 -Ai1z  1/m, -2 4o

A ~Agq —)\22 ayo 1/m2

Y=l mef Biz Ay =Agy (o
~Bi2 ~mgwd -Aj, ~Agg

For the calculation of the matrix Mt we must diagona-
lize the matrix Y by solving the corresponding secular
equation, i.e.det(§ -zI) =0, where z is the eigenvalue
and I the unit matrix. According to Eq. (40) one obtains
an equation of 4th order for the eigenvalues z, which
can be solved analytically only for special examples.
Such an example is the particular case with a0 =0, 8,5=0
Ajp=0and Mgy =0 where the secular equation is obtained
as

@+ 2P? +0%) (2422 v0d) =0, (41)

The eigenvalues are
Zl=-/\11+iw1, 22=—/\22+i(1)2, Z3 ='—/\11 —iwl,z4=—/\22-—lw2. (42)

Only positive values of Ajyq and Ay, fulfil Eq.(17).
Applying the eigenvalues z;, of Y we can write the time-
dependent matrix M(t) as follows:

-1
Mpn (0 = SN, exp(z;t)N, -, (43)
1 ~

where the matrixz N represents the eigenvectors of Y,
2 YppNpj ~2iNp; . (44)
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In the case of the particular example with eigenvalues
(42) the matrix M(t) is given hy
xp(—)tut) CoOSw lt 0 —!_exp(_)\l 1t) sinw lt 0
Mm@y

1
xp(~A,t) sinw_t
0 exp (—Azgt)cOszt 0 [-1;-2-;-: p( A, ot) sinw,
M(t) =

-, exp(-A; ) sinet 0 exp(-Ajtcoswt 0

0 -maw £Xp(-A, 1) sinwyt, 0 exp (-2, t) cosw .,
(45)
We note that ﬁ(t) decays exponentially in time, if Ay

and Ay, are positive. The matrix M(t) can be used to eva-
luate o(t) defined by Eqgs.(24) or (37). For example we

find the following expression for 012 =0,q With M(®
of Eq.(45): 1°2

aqlqg(t) = exp(—()\11 + )\22) t) x

x {(aqlqz(o) ~%q,4, (=) cos w jtcoBwyt +

+ ;1;;1_(0*1291(0) = q,p, (=) sinwt cOswat + (46)
+ mwz-a—);(aqlpz ©0) -~ aqlpz (=) cosw (tsinwgt +

+ Eﬁ%m;(aplpz ©) —aplpz(m)) sinw ;¢ Sinwyt } +%q5, (o) .

Similar expressions are found for the other matrix ele-
ments of o(t). The matrix elements of g(~) depend on Y
and D and must be evaluated with Eq.(25) or by the rela-
tion

T
(

olw) = 2 [ M(t)DM

O— 8

t)dt . (47)
As an example we present the value of %4.q (o0) ¢
172 i
2 2.,~1
Oqg05 ) =20 11+ 255 )% + (@, + 0N+ hgp) 4 (0 ~00y) 7k
XA 1+ A 9 A 11 +A00)% +02 +02)D +((A 42,02 +0% 0D /m+
11742 11% %28 1772 Mg 117 %22 172 gp{™1
+H(A g1+ Ap0) B mg_wf)nqlpz/mz +2(A11+A22)Dp1p2/(m1m2) loo (48)

Similar expressions are obtained for the other matrix
elements of o (o).
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6. Conclusions

In this paper we have formulated the time—dependence
of a system consisting of two damped oscillators. The
equations of motion of operators and expectation values
are obtained by applying the theory of Lindblad 723/ and
by extending it explicitly to two oscillators. The resul-
ting time-dependence of the expectation values shows an
exponential damping.

In order to apply this théory to the dynamics of the
charge and mass asymmetry degrees of freedom in deep
inelastic collisions one can start from the Hamilto-
nian H given by Gupta et al.’% , which depends on the
coordinates ng=(Z;~-Zy) AZ;+ZJand n y=(N;~Ny)/(N;+Np)of
the proton and neutron asymmerties, respectively. By comr
paring this Hamiltonian with Eq.(4) we can set K 19=0 and
ﬂ1j=0 in Eq.(4). In a first application of this theory
the matrix (10) which describes the damping and diffusion
of the system can be chosen freely by fitting the expe-
rimental data. Work in this direction is in progress.
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